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KINETIC THEORY OF INHOMOGENEOUS SYSTEMS 

John C. Price 

Laboratory for Theoretical Studies 

Goddard Space Flight Center-NASA 

Greenbelt, Maryland 

A theory is developed which treats the coupled equations of the 

various hierarchies as simultaneous equations in time. This 

scheme proceeds by successive approximations rather than a power 

ser ies  expansion in the small parameter ( in a plasma, 

nr; in a Boltzmann gas . The theory is suitable for the derivation 

of equations for non-uniform and force driven systems. Examples 

are given for a plasma and a Boltzmann gas. 
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I. Introduction 

Although the goal of kinetic theory is the description of general non- 

equilibrium systems, most present work is directed toward obtaining small 

corrections to the behavior of infinite homogeneous systems. However for an 

inhomogeneous system the domain of validity of such corrections becomes 

smaller and smaller as their accuracy increases. rhus while the first ap- 

proximation (to the collision integral) may be presumed accurate when L >> r o  

o r  A,, where L is a characteristic macroscopic length and r o  o r  A, a typical 

interaction length, the next correction will be quantitatively significant only 

for L > Amean f r e e  p a t h ,  etc. Since spatial gradients and external forces are 

generally used to  create non-equilibrium systems, the experimental verifica- 

tion of the theories will prove difficult. 

In addition the assumptions needed to  obtain kinetic equations (Section 111) 

are weak enough so that equations for non-uniform and force driven systems 

should be easily derivable. The fact that they cannot be derived indicates 

that some aspect of the problem has been overlooked. 

Finally it appears that most expansions in kinetic theory diverge, so  that 

the mathematical simplifications must be underlaid by a physical e r ror .  

In such a case one has reason t o  reexamine the basic procedures of kinetic 

theory, and to seek a first order theory (the first approximation to the collision 

term) which is as simple and general as possible. 
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1 Most modern work in this subject is based on the formulation of Bogoliubov, 

who set up the hierarchy of equations and a procedure based on expansion in a 

small parameter for solving them. In the case of a Boltzmann gas (Section VI) 

Bogoliubov’ s procedure breaks down for an inhomogeneous system because the 

boundary conditions (at r = ”) which he imposed are not satisfied, and are not 

relevant to the physical problem. 

H i s  theory with some modification can be applied to yield a first  order 

plasma kinetic equation for  an inhomogeneous system, because three particle 

effects (shielding) are included in the plasma theory. However in this case 

the weakening of correlations described by Bogoliubov has been omittedY2 so  

that the theory is unsuitable for non-uniform systems. 

At higher orders Bogoliubov’s procedure corresponds to the calculation of 

correlation fuiictions in successive intervals of time, which disagrees with his  

statement of the time scales involved (Section 111). Nevertheless we believe 

that Bogoliubov obtained the first order theory almost correctly, and in the 

present work we attempt to correct the difficulties which appear in the higher 

orders . 
Sections I1 and 111, which are non mathematical, discuss the motivation for  

the work, the significance of the small parameter, and the role of time. The 

statement of the procedure to be used appears in Section 111-D. 

In Section IV the first order plasma theory is developed, and 

the second order theory is compared to the quasilinear theory3y4 

work of Dupree.5 
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Section VI contains a discussion of a Boltzmann gas, while Section VLI con- 

tains a brief application tcj an equilibrium plasma. 

In the conclusion the general outlook for the theory is discussed. 

11. The Purpose of Kinetic Theory 

In a mathematical sense the description of a complex physical system 

(N -10 2 3  particles) by one o r  several continuous functions obeying relatively 

simple equations is not justified. The equations of motion are known (ignoring 

quantum mechanical effects, and in the present treatment, radiation) so that in 

principle there is no need for further approximations. 

In fast, of course, one cannot solve these equations for the motion of the N 

particles comprising the system. In addition the necessary boundary condition 

(typically the initial state of the system) cannot be given by experiment, so that 

even a formal solution to the equations of motion is not useful. 

Thus our theory is necessarily statistical. We believe that the justification 

for our procedures will ultimately come from statistical mechanics, but this 

justification is lacking at present, except in the case of thermal equilibrium. 

It follows that the theory is completely ad hoc until experimental evidence is 

available. In this respect verification of the Boltzmann and Vlasov equations 

represents the major evidence that the theory is headed in the right direction. 

For  the same reason we attempt to drive theory toward experiment by con- 

sidering non-uniform and force driven systems, as they typically represent non- 

equilibrium experimental situations better than homogeneous field free systems. 
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One may conceive of experimental verification of the theory at many levels. 

A small detector (AV - A:,, f r e e  p a t h ,  AV - Adbye ) may measure the directed 

flow of particles in order to measure the one particle distribution as a function 

of time. A pa i r  of such detectors spaced closely together may be used to ob- 

tain the evolution of the pair correlation function, etc. 

In fact such detailed measurements are virtually impossible, so that only 

crude comparisons with the predictions of kinetic theory may be achieved. For 

this reason we treat basic physical principles as internal constraints on the 

theory, even though direct experimental verification may prove difficult. In 

the present work the conservation laws of particle number, momentum and 

energy will be used as a test of the theory. 

ID. Fundamental Assumptions 

A .  Mathematical Framework 

Since the procedures to be used in setting up a kinetic theory are a matter 

of choice we must be careful to  justify the equality sign in any equations we use. 

For this reason we work with a hierarchy of equations which can be derived 

rigorously. The Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy is natural 

for a Boltzmann gas (Section VI), while the Kl imonto~ich-Dupree ,~ ,~  equations 

a r e  more convenient for describing a plasma (Section IV). We also work with 

another (quasilinear) hierarchy (Section V) first mentioned by Dupree,' because 

it is mathematically simple. We believe that these latter equations are unsuitable 

for describing real systems because of the absence of source te rms  in f , but they 
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permit a direct comparison with quasilinear theory and its extension by D ~ p r e e . ~  

It should be emphasized that the functions satisfying the above equations are not 

the quantities of physical interest. Each closed set of equations obtained by 

setting the (n $- 1)th correlation function equal to zero is fully time reversible, 

while we seek equations describing an irreversible approach to a limiting state, 

e .g. thermal equilibrium. 

In what follows we justify the continued use of the equality sign by keeping 

our equations formally identical to those of the respective hierarchy. W e  ob- 

tain successive approximations to a set of correlation functions, where the dif- 

ference between the exact functions and the approximate functions remains in 

the equation and may, in principle, be determined. 

B. The Use  of the Small Parameter 

We consider each of the three hierarchies as a time reversible (and hence 

improper) approximation to a different set  of equations (a kinetic hierarchy) 

which describes the quantities of physical interest. The arguments that follow 

apply to  the physical quantities rather than the solution by direct integration of 

the various time reversible equations. 

We may begin by specifying the relative importance of terms in each 

equation by scaling velocities, lengths, times, etc. to  those which are believed 

to dominate the physical behavior. We do not car ry  out the procedure here, 

but simply state that it leads to the appearance of a small parameter. This 
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parameter (to be called p) is essentially n r z  in a Boltzmann gas, and (nhDebye3)-' 

in a plasma. In most physical situations the numerical value of p is o r  less, 

but it may be somewhat larger without destroying the significance of the theory. 

We choose to work with unsealed quantities, and insert a coefficient ,8 = 1 where 

the small parameter appears in the scaled equations. The significance of ,8 in 

the theory we wish to set up is the following: 

We  demand that the sequence of functions obtained by including more and 

more physical effects (i.e., additional terms in p in the equations) be convergent. 

Thus 

This severe requirement is weakened by several conditions which cannot 

be avoided. 

1. The requirement cannot be satisfied over all of phase space. For ex- 

ample the ordering in p breaks down for short distances I r - r \ 

-V q '/mv t i  e rma 1 in a plasma, and for large distances I r - r I = h m e a n  f r e e  p a t h  

in both a plasma and a Boltzmann gas. Thus convergence is strictly 

required only in the region specified in the original ordering. 

2.  For short times (t < t c o l l i s i o n  ) the ordering procedure is meaningless. 

Here we use procedures discussed in Part C. 

3. It is possible that solutions may diverge after long times. rhis  is un- 

important provided the system effectively reaches an end state before I 
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the divergence occurs. We find asymptotic behavior by special pro- 

cedures such as transport theory (e .g., Chapman-Enskog 9 theory) rather 

than by direct integration in time. 

Although the demand for  convergence does not specify a mathematical pro- 

cedure, we believe it eliminates the one most commonly used. In general a 

perturbation expansion in ,B maps the flow and scattering of particles onto 

higher and higher order terms, while in fact they are moved about within the 

same function. The expansion breaks down after the displacement of a sub- 

stantial number of particles in some region of phase space. Because expansions 

may be expected to diverge, we do not expand. Instead, we truncate at a given 

level consistent with the 7'smallT1 statistical effect in the next higher equation, 

and attempt to solve the resulting equations exactly. At a given level a perturba- 

tion expansion may be convergent for numerical estimates, but the expansion 

must be reappraised at each higher level of approximation. 

Obviously convergence does not determine a mathematical procedure , it 

only puts a "boundary conditionr' on the techniques that may be used. We believe 

that the physical behavior is representcd by an ir-tricate mathematical de- 

pendence on the small parameter, so that a statement of a general mathematical 

procedure is not possible. 

C. The Significance of Time 

Our conclusions regarding time are similar to those of Bogoliubov.' Our 

statements apply to quantities which w e  might conceivably measure in the 
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laboratory, for which we wish to obtain equations. If we consider the behavior 

of a physical system which is set in motion at some instant of time, then the 

evolution may generally be broken into three phases. 

1. In a time of the order  of a collision time t an arbitrary initial state 

will relax s o  that the correlation functions become substantially func- 

tions of the one particle distribution f ,  and hence of one other. Some 

effects of the detailed initial conditions may pers is t  (e.g., in the case 

of plasma instabilities); these must be included in the theory. During 

the initial relaxation no general procedure (including ordering) is valid, 

and kinetic theory is entirely an initial value problem. 

In the mathematical theory integrals over the product of a potential 

and a correlation function appear frequently. If the initial conditions 

a r e  reasonable then these integrals may reach their asymptotic form 

much more rapidly ( -' fJ/vt h e  r m a  1 Or 

the relaxation time de scribed by Bogoliubov. 

t h e  rma 1 ). This is 

2. Following the initial relaxation f decays roughly as d f / d  t = l / t  c(f - f o ) ,  

i.e., rapidly at first and then more and more slowly while approaching a 

local end state f In the early stages the separation of t imes 1 and 2 

breaks down and the theory we develop is less valid. This is not im- 

portant, as we are generally interested in the asymptotic behavior of f ,  

rather than the precise way it gets there.  The aim of the present paper 

is to find equations valid during this second regime. These equations 
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should describe the final relaxation of the correlation functions as they 

become functionals of f , and the subsequent evolution of f .  

3. The third time is often given by L/v thermal, but it is better described as 

the decay time for a macroscopic state, e.g., a thermal gradient o r  a 

gaseous shock. In this regime a description by transport theory should 

be adequate. 

The second and third time intervals are described by the solution of the 

kinetic equation, while only the first time interval is relevant for the derivation 

of kinetic equations. In particular we consider the end of the first time interval, 

as the system approaches asymptotically the kinetic regime Difficulties (e .g., 

the breakdown of ordering) early in the first phase are avoided simply by con- 

sidering t always in this asymptotic limit. 

In a plasma some effects of initial conditions may persist  in this limit. If 

a general equation might be written 

dY (& + H) Y + 0.t = 0) ax = C ( t ) @ ( t  = 0 )  

then the term on the right is permissible, providing the operator C ( t )  eventually 

carries C( t ) 0( t = 0 )  to 0. The term a( t I O )  dY/dx is improper as it continues 

to  affect the evolution indefinitely. This is contrary to  our demand (relaxed 

perforce in Section VI) that the evolution of the system depend only on f after 

sufficient time. In addition this term must vanish if  the evolution is to be 
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independent of the origin of time. This reasonable requirement also implies the 

condition C ( t  ) C(T) = E( t t 7 ) .  

In what follows all equations are treated as simultaneous equations in time. 

D. Formal Procedure 

The procedure we advocate is one of successive approximations. For 

simplicity we discuss the first order statistical correction to the ,d = 0 equations. 

1. The equations of the hierarchy are integrated for the case ,B = 0. It is 

important to keep the streaming (homogeneous) solutions for the cor- 

relation functions, although these terms frequently may be neglected in 

the solution of kinetic equations. The resultant expressions for the 

correlation functions Y(P = 0)are  then substituted into the small ( p )  

terms in the hierarchy. The difference between these expressions and 

the (unknown) exact solutions remains in the equation, but is now higher 

order Y - Y(,B = 0 )  O ( P ) ,  and would be considered in the second order 

theory. 

2 .  The small term pY, + will, in general, contain an integral over the 

earlier behavior of lower order correlation functions 

rt  

The behavior of the lower order functions is now approximated by the 

ii3 = 0 solutions such that all correlation functions are evaluated at the 
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same time t. Thus 

- 
Y,, ( 7 )  - En ( 7 ,  t ) Y n  ( t )  + 

where the operator En is the streaming operator that carries Ynfrom 

time t to time 7. 

3. The Yn ( t  ), Yn-l ( t  ) are now considered to be the exact correlation 

functions (rather than the ,# = 0 correlation functions) so  that the ap- 

proximation is thrown over from the functions Y to the operators E. A s  

we are deriving equations rather than solving them, we are approximating 

(scattering) operators rather than functions. 

4. The scattering operators involving time integrals are now evaluated. 

There is now a difficulty which appears in the first order theory, and 

presumably in the higher orders. The operators just defined a r e  not 

mathematically proper, e .g., they may diverge. This must be corrected 

by making each operator consistent with the small  (order ,B) operators 

in the next higher equation. The reason for this difficulty is found from 

examination of the resulting equations : we a r e  using the approximation 

,B = 0 in order to get a grasp on the problem, but the desired result is 

not analytic at ,# = 0. In general this consistency is the most difficult 

part  of the theory to obtain, but since it represents a small (order ,#) 

effect on an operator which is already small, the theory is not sensitive 

to  the exact method chosen. 
11 



The resultant equations represent the kinetic hierarchy including 

the first (order p) statistical effects. 

Although we can easily generate a formal statement and notation for  going 

to  arbitrary order in p, the added weight and complexity add nothing to  the 

theory. Instead we describe the general procedure only so far as we are able 

to car ry  it out explicitly, and to  the level of the first equation we cannot solve. 

We state two features that are not immediately apparent. Firstly, we are 

obtaining successive approximations for a correlation function Yn as a function 

of lower order functions; Yn = Yn (Ynvl , Yn-2 , . . .  , f ) .  It follows that the 

kinetic hierarchy closes naturally at each level n. Secondly, the analytic solu- 

tion at the level ,f3 .e is required for the construction of the pe+l equations. This 

illustrates forcibly that it is not possible to obtain corrections to  equations 

which are already insoluble. 

Despite the fact that the theory is convergent by definition (if this cannot 

be arranged a new ordering is necessary), so  that one may in principle go to 

any order,  w e  have no proof that this is a correct  procedure. The question of 

validity lies outside the theory. 

IV. F i r s t  Order Plasma Theory 

Our techniques follow the methods developed by Dupree7 in his brilliant paper 

of 1963. The equations are those developed by Klimontovich and Dupree; they 

are equivalent to those of the BBGKY hierarchy. The one particle distribution 
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for species p, f ( r  l ,  v l ,  t) is normalized so  that 

where N, is the local particle density and i, is the system average density. 

f satisfies the equation 

where X i  I (ri , v i )  , P is the ordering parameter, and the second notation for 

the collision te rm is often convenient. 

The electric and magnetic fields (E and 9) a r e  determined from hqaxwell's 

equations, and will be regarded as known. We shall treat  the forces as con- 

stant in time (an adiabatic hypothesis), which is valid i f  the correlation functions 

reach their asymptotic values rapidly compared to the variation of the fields.'' 

In our examples we consider forces which are  constant in space, although they 

may in  general vary over distances much greater than a Debye length. 
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The zero order (/3 = 0 )  solution to (1) is fp (XI, t )  = e - v ( l )  f (X1, t 0 )  P 

where the operator e - V t  runs the particles backward on their orbits 

from the initial point r( 0 )  = r ; v(  0 )  = v. If the solution to the zero order 

(Vlasov-Maxwell) equations is not known it is not possible to  go to  first order .  

A s  implied by the right side of Eq. (l), we use the Coulomb approximation in 

treating fluctuations in the system. Electromagnetic effects may easily be in- 

cluded in the theory)" but they complicate calculation considerably. For  

present purposes any fluctuating field E is related to the fluctuation density f by 

Poisson's equation 

In order to  permit comparison with Section V, we write the equation for the 

general correlation function (ignoring particle speciesl2) 11" (xl , x,, 
W e  define the Vlasov operator 

0 , x,, ; t ). 
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the fluctuation operator 

4 

and the interaction operator 

Then h, satisfies the equation 

In the sum on m the remaining coordinates are distributed in all ways such 

that each appears once, and rearrangements within a function are not distinct. 

The correlation functions h, a re  related to  those of the BBGKY (gn, with 

g, = "g", g, = "h", etc.) by 
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where13 

1 a(x,,x.) 1 = = q r i - r .  n J ) ( I  8 v .  - v .  1 )  

The first correction in /3 to the equation for f may be found by calculating 

h, to zero order. We set P = 0 and n = 2 in Eq. (2), and use the more 

familiar notation h, =. (8f 8f). 

[ -  + T( l )  + T(2) (8f6f) = 0 3 (4) 

A s  pointed out by Dupree a product solution is possible. We define a 

propagation operator P( X, t ) by 

[&+ T ( l ) ] P  = 0 

with the initial condition P(X, 0 )  

(electric field) operator 

I. It is convenient to define an auxiliary 

(5) 

so that 5 may be written 

16 



We first integrate along the orbits as described previously. 

This expresses P in te rms  of f at other positions and earlier times. However 

from the ,B = 0 approximation for f we have f (7 )  = e" ( t - 7 )  f ( t  ) . Thus 

Operator Eqs. (6) and (7) may be solved by a Fourier transform in space 

( k )  and a Laplace transform in time ( w ) ,  provided we use an adiabatic hypothesis 

to ignore the space and time variation of f in the transforms. Then the trans- 

forms of the operators are given by 

L 

1 
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where the generalized dielectric function is given by 

?- 1 

To use the P operators we Fourier transform the operand, apply the oper- 

ator, and invert the Fourier and Laplace transforms. For example the solution 

to Eq. (4) i s  given by 

( S f S f  1 XI, x , ,  t) = P(X,, t) P(X,, t) . (6f6f  I x,, x, ,  t = 0)  (11) 

This solution is improper in several respects. For example one part  of the 

solution is given by ( S f s f  1 X, (-t), X, (-t), t = 0), which does not vanish as 

/ r i  -1. I -0. This defect is caused by the omission of three particle effects, 

which tend to smear out the orbits and prevent the particles from being cor- 

related to \ r i  - r 1 +a. This represents non-analytic behavior in ,By and should 

be corrected in the second order theory. 

1 

A second defect ar ises  in the boundary conditions which should be applied 

to the correlation functions. The difficulties of using the Fourier transform 

illustrate this, for in general (8 f x f )  is not simply a function of r - r j .  One 

cannot seek the asymptotic behavior (in time) of wave effects14 for they cor- 

respond to  the propagation over large distance of the initial fluctuations, which 
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may be determined only by specifying a boundary condition. Once again we be- 

lieve that the proper resolution should be found in the treatment of three particle 

correlations. 

Despite these difficulties we may find a first approximation to the kinetic 

equation, for the potential q/ I r , - r , I in the collision integral cuts off most of 

the dependence on I r - r2 I > XDebye . W e  ignore the "slow1' dependence on space 

and approximate 

f (X,,  t = 0) 

The function f (X1, t = 0 )  is written 

the operator 

f (X1, t) in the collision integral, where 

must be inserted in the time integrals defining the trans- 

formed (a) P operators. If we shorten notation by defining 
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then the kinetic equation is given by 

1 

The Laplace transforms are  evaluated by considering t in the asymptotic 

limit. We illustrate the procedure with a simple example. 
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A. Inhomogeneous System 

For a system with no fields the velocity v is a constant and r( t ) = r t v t .  

The operators Po, Pr and Pv are given by 

Po = ( - i w + i k * v ) - l  P = - ( a - k . v ) - 2 k  P = ( - i w t i k - v ) - l k  

(14) 
and the dielectric function is 

As the methods of evaluation have been discussed elsewhere15 we simply 

give the result 

n 6 ( k  v1  - k  * v 2 )  
O(k, k * v2) at a f  +- v1 . -  ar,  a f n-m dv,  -[dk$[q2[dv2{ l k ( k ,  k .  v2 )12  
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where p is a real infinitesmal, w4 n k  + Yk, and we have defined 

@ ( k ,  k -  v)  = + 1  Im c ( k ,  k - v )  5 0 

The collision integral conserves number density and momentum, but it does 

not yield a correct energy law, for the energy transport cannot be written as 

the divergence of a flux. Although the difficulty is easily traced to the spatial 

adiabatic hypothesis in the Fourier transform, we believe that a more correct 

mathematical treatment is not justified, as this will describe the flow over 

large distances of the microscopic fluctuations originally present in the system. 

Instead a treatment of three particle correlations should cut off the dependence 

of the collision term on distant processes, as well  as  conserve energy. 

B. Plasma in a Mametic Field 

For  simplicity we assume a plasma in a uniform magnetic field Bgz al- 

though slow variation of B in space, and weak electric fields may be included 

easily.16 We express velocities and wavevectors in cylindrical coordinates, 

taking the x direction as origin for angular variables; v 

k 

~ 

(vL , [ I ,  v .) , 

( k , ,  n ,  k .). For physical applications it is appropriate to keep spatial 

dependence in Cartesian coordinates, S O  our notation is sometimes mixed. The 
22 
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particle orbit is given by 

The Po, P, and P, operators are given by 

where 

n J J n  

L, (n, a, 8, a )  = - a J, ( a )  cos (0 - a )  - i sin ( 0  - a )  

(18) 
n J J n  

L, (n, a, 8, a) - a J, ( a )  sin (0 - a )  t i da cos (0  - a )  

23 



Jnis the Bessel function of order n, and we have defined 

x, (k, v ,  w )  = I C )  - k,vz - nwC 
- kl \'I 

a -  
w c  ' 

and the dielectric function is given by 

1 

The Laplace inversion and analytic continuation are now straightforward 

but the result is s o  intricate the evaluation should be performed after approxi- 

mations suitable to the problem at hand. A single difficulty arises, which is 

the appearance of terms oscillating at multiples of the cylotron frequency. 

These should be eliminated by time averaging over one period, for i f  the adia- 

batic hypothesis is not satisfied (in effect making df/dt ; ,  small) then our analysis 

is not relevant to  the rapid time variation of the system. 

For purposes of approximating the k integral one must know the dependence 

of the dielectric function a .  However this lies within the linear theory and will 
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not be discussed here. Even in the case of general fields leading to particle 

drifts the collision integral conserves particle number and canonical momentum. 

The transport of electrostatic energy is  not described properly so that a more 

thorough study of wave effects is needed. 

V. Toward Second Order Plasma Theory 

Our treatment in this section is very incomplete because of the great com- 

plexity of the mathematics. We simplify the problem by working with the quasi- 

linear hierarchy described by Dupree .8 The equations a r e  formally identical to 

those of the preceding section, but the correlation functions (w,) have no delta 

function between spaces; they a r e  non-singular. One obtains the same equations 

by dropping from the BBGKY equations all te rms  in V+, while keeping integrals 

over such terms. Because the w n  equations have no sources in f the correlation 

functions do not relax to become functionals of f .  In this respect the system 

never becomes "kinetic" for knowledge of f alone is not sufficient to determine 

the subsequent evolution. 

Using the operators defined in Section IV, we have 

J 
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The streaming solution (including shielding) is given by 

where we have abbreviated P,(X,, X,, 

Equation 20 has been integrated by Dupree for the special case V f  = 0, i.e. for  a 

homogeneous system with no forces ,  o r  else d f / d H  = 0 in the case of a uniform 

magnetic field. We shall use his solution, despite the fact that it is not strictly 

Xn; t) = P(X,, t) P(X,, t) - .P(Xl,, t). 

cor re ct  in general . I7  

For p : 0 we have 

Since the source t e r m s  in the integral are of lower index an iterative solu- 

tion for w n  is now possible. Instead we use successive approximations in the 

source terms, starting with the streaming solution. We approximate the be- 

havior of the wm by the streaming solution, after which the wm are treated as 

the exact functions. We then use the commutative properties of the P operators 
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Substitution of w n +  1,  into the equation for wn yields 

1 -  

The first wn + 1,  should be considered order 1, for while it is quantitatively 

small its effect on wn cannot be found by expansion. The terms with factor ,B 

should then be evaluated from the new p = 0 equations. 

Because w ~ , ~  is the ,B = 0 solution for the source t e rms  of w3, it follows 

is formally that w 3 ,  is the correct ,B = 0 solution for w3. Thus P ( w 3  - w 3 ,  

order  ,B 2. For n > 3 the source terms must be iterated n - 2 times before 
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p (w,, - w " , ~ - * )  is order p 2 .  We pursue the general case no farther,  but consider 

n = 2,  and drop the p2 terms. 

Although w3 , o  depends explicitly on the initial value of w3 ,  the evolution of 

w 2  should not depend on a particular choice of the origin of time. To ensure 

this we must give a consistent treatment of the initial value problem. 

Because of the asymptotic analysis (Section 111-C) and equation (23) we have 

x W 2 ( t ) W 2 ( t )  

so  that w3 ( t  ) is a functional of w 2  ( t ) w 2  ( t ) . The operators should be evaluated 

in the asymptotic limit, which does not exist at this level because of particle 

streaming. This defect should be corrected by the inclusion of order ,b effects 

in the solution for w3, but we may indicate the formal procedure. At the initial 

instant we have 

3 

W 3 ( t  0 )  P 3 ( t ) w 3 ( t  = 0)  - C C ( i ) w , ( t  O > W 2 ( t  0 )  (26) 
t 1 :  t = o  i =  1 
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The left side denotes the measurable initial value for  w 3 ,  from which the de- 

pendence on w 2  ( t  = 0 )  (also measurable) must be subtracted to yield the proper 

initial value for the te rm w3 , o  of equation 25. 

Due to the integrations of the operators O( 1, 3), O( 2,  3) on the initial value 

of w3 and the subsequent integration O( 1, 2) in the evaluation of the collision term 

for f ,  we may obtain an estimate of the effect of w3 ( t = 0 )  on the evolution of f 

despite the unboundedness of the unintegrated quantities. 

The term w 3  ( t  = 0)  contributes an order ,B t e rm to the kinetic equation so 

that a rough estimate is satisfactory. By ignoring the non linear te rms  in 

Eq. (25), we may integrate to find this correction. 

We do not evaluate this te rm here, for it has  the general form of the col- 

lision integral produced by the initial value of g, of Section IV, and is formally 

order  ,B smaller. 

Henceforth we omit w3 ( t  = 0)and use the convenient notation w 2  (ZfZf>, 

where the subscript denotes a continuous rather than a singular function. 

x O ( i ,  4)P-'(Xi, t - 7 ) P - ' ( X 4 ,  t -7) (Ff(-, t )Zf(x, ,  t)) , (Ff(- ,  t ) 8 f ( x 4 ,  t)), (27) 
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Due to the sums 

* 

and the two ways of distributing the remaining coordinates the right side con- 

tains 12 terms in (fif ' ; f)c ( s f s f ) c .  

We consider first  the four te rms  containing both O( 1, 3) and O( 2 ,  4). Upon 

evaluation we find that these terms have the form 

dk d k '  c ( k ,  k ' )  e i k * ( r 1 - r 2 )  e i k " ( r 1 - r 2 )  \ o f 6 f  I k) ( 8 f S f  I k')= 51 
while all remaining terms have the general form 

Jclk' b: ( k ,  k ' )  ( 6 f  8 f  I k)c ( 8 f S f  1 k'>, 
i k.(r, -r2) 

I d k  e 

The former terms correspond to an interaction between 8 f ( X  1)  and 6 f ( X  2 )  over 

a range I r - r I -A,, and will be neglected compared to the latter,  which 

represent the interaction of 8 f (x2) and 8 f (x2) separately with a fluctuation 

background. This approximation, which is s imilar  to the neglect of close en- 

counters in the equations for  h,, , causes a great simplification, for it follows 

that the behavior of (x , )and (X2)separate as in Section V. It is convenient to 

30 



abbreviate notation by treating only the X,  dependence, written I 6 f ( X ,  , t)). We 

have 

+ P ( X 3 ,  4 O(37 4)p-'(x3,  7) p-'(X4, 7) { (* f (X , ,  t) 6 f ( X 4 ,  t)) ,  1 S f ( X , ,  t)) 

The operators O( 1, 4) and O( 3,  4)  create an electric field from the fluctuation 

density 6 f ( X 4 ) .  In order to  proceed we assume that this field may be ex- 

pressed as 

dk 6E(k) e i k e r  e - i o k t  I 
18 Although this is consistent with the asymptotic behavior from linear theory, 

it does not necessarily give the proper connection to the initial state of the 

system, contrary to the procedures of Section III. Finally because the correlation 
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function (8 f (Xi) 8 f ( X  j ) )  is not a function of r - r except in the case of spatial 

homogeneity we use an adiabatic hypothesis to omit the dependence on slow 

spatial variation. 

x P - ' ( X I .  7 )  {(8f (-k, v 3 ,  t)  6 E ( k ,  t))c e- ik*r3 I q x , ,  t))' ( 8 f ( X 1 ,  t )  8 f ( X 3 ,  t ) )c  

The P operator contains two terms, a flow operator and a shielding operator. 

Because evaluation of the latter requires once again an assumption about the 

behavior of the electric field we leave these te rms  for further study and ap- 

proximate 
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in Eq. (29). 

The first term may be evaluated by carrying the r integration to infinity 

a (6E(k, t )GE(-k,  t)) i W k T  e ik.  [ r l ( - ~ ) - r l ]  pr;v(r) 

This term describes the diffusion of particle orbits due to background fluctua- 

tions in the electric field. This effect was first described by Dupree,” who based 

his theory on the Vlasov equation. 
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Before proceeding we discuss the consistency relations which modify the 

right side of Eq. (30). It should be noted that the desired consistency should be 

sought between the new equations for wn  (Eq. (24)) where the behavior of each w n  

now differs from the ,b = 0 approximation because of interactions with w 2 .  This 

modified behavior a l te rs  the Pn which propagate the w n  in time, which in  turn 

leads to a correction of the "collision operator" relating dWn/a t to wm ( t ) ( t ). 

In the approximation that interactions between spaces X i  , X are neglected 

the consistency for the w n  equations simplifies greatly because of the possibility 

of treating each "8 f T 1  separately. The desired consistency among the equations 

for w,, now reduces to self consistency of the I 6 f )  equation, as in the case of the 

Vlasov theory (Section B). 

We wish to modify P, which propagates 1 6 f )  for ,b = 0, to absorb the correct-  

ions produced by the right side of Eq. (30). These corrections should alter in a 

self consistent way the collision operator relating d 1 8 f)/d t to  (8 f ( t ) 8 f ( t )) 1 6 f ( t )). 

Since this appears very difficult to ca r ry  out we simply indicate how some of the 

consistency relations might be included. 

Thus if we modify the orbits and ignore the other order  ,b corrections, then 

in Eq. (30) we replace (symbolically) the operator 

. - V r  . i k . r  - a v7 

a V  e 

a 
a V  .-VI7 . i k . r  - 
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where 

and 

This correction has been considered in the limit of short time” and long 

time2’ in other work. This orbit correction may be applied to any other 

resonance te rm to eliminate mathematical difficulties, but i ts  effect may be 

small compared to the other order ,8 terms in a particular physical problem. 

The fourth t e rm may also be evaluated by carrying the 7 integration to 

infinity. 

This te rm represents a correction to the 

L] a V  3 ( a f ( - k ’ ,  v l ,  t) Z f ( k ‘ ,  v 3 ,  t)>, 

shielding of 1 6E) due to non- 

uniformity in the background plasma. The principal effect is a correction to 

the dielectric function, leading to a change in the frequency u k .  
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The second and third te rms  describe effects similar to large angle scattering 

in a Boltzmann gas. The third 

represents the correction to the electric field caused by the modified orbits of 

the fluctuation particles. The second cannot be evaluated as written in Eq. (30) 

because the time integral is not well defined at its upper limit. This may be 

corrected by including the diffusion of orbits, but the self consistent correction 

due to scattering is probably more important physically. In both terms the 

non-linearity must be taken into account in correcting the P operator, because 

d 1 6 f ) / 6  t depends on the velocity distribution of the correlation functions through 

dk' ( 8 f ( k ' ,  v )  s f ( - k '  V '  J d v '  J 
We expect these scattering te rms  to be important for the description of acoustic 

phenomena where phase velocities are essentially constant over a range of wave 

numbers.  
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It is obvious that second order plasma theory is very complicated even 

when particle discreteness effects a r e  omitted. It appears desirable to seek 

cr i ter ia  for the relative importance of terms in a given physical situation, and 

means of approximating them, rather  than a significantly better analytic treatment. 

A. ComDarison with Quasilinear Theory 

In the analysis of quasilinear theory and mode coupling one derives an 

equation for a spatially averaged distribution f ( v  , t ) by solving the equations 

for the fluctuations (Fourier transformed) f k ( V ,  t ), E, ( t ). 

Thus the right side of the equation 

is to be found from the equations 

The usual procedure is to solve Eq. (32) by perturbation theory, treating 

the convolution integral a s  small. Thus the first approximation a r i s e s  from 

37 



the solution of the linearized Vlasov equation, while the corrections may be 

written as the sum of two series: 1) Terms proportional to d f  o , d v  which we 

call shielding te rms  and shall discuss later. 2) Terms containing 

. - ik .v t  f k  ( v ,  t = 0 )  which are usually called the "initial value terms." We  shall 

discuss these t e rms  first. Dropping the shielding te rm from Eq. (32), and per- 

forming a power series expansion in E, we find 

where the dependence on f ( t = 0 )  arises from the convolution over f k-k 1 .  

Because 

is the transform of 

which may be identified with particle orbits, we draw the following conclusion: 

Neglecting initial value t e rms  is equivalent t o  neglecting the effect of electric 
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, 
fields on the orbits (or statistical orbits) of particles in the fluctuations, and 

the modification of the electric fields due to  these particle deflections. 

1 -  A s  an example we consider f ( i . v .  from the perturbation analysis and 

average over the electric fields in the random phase approximation. 

The quantity is equal to the first correction (in D,,D,) to the solution of 

where D,  and D, are given without the consistency requirement, and with upper 

limit t in the time integration. By dropping initial value terms we omit this 

correction . 
We next consider the effect of the perturbation treatment on the shielding 

te rms .  A simple way to estimate some of these effects is to expand (inD, , D,) 

the equation 
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The lowest order term 

varies  as 

in the resonance region w k  = kv. We may estimate the fastest growing correc- 

tion from the te rm in Dv, and overestimate the time of validity of the expansion 

by treating D, as constant. 

- iC.J 7 k x e  

By comparing f k',  

in the resonance region for  t - (k2 D v )  - 

and f 2, we see that the perturbation series breaks down21 

From the equation 
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we may estimate the time for  f to change as t - v2/D,. Thus the perturbation 

expansion may break down before f changes significantly. 

Although this breakdown need not affect the electric fields strongly (the 

secularities vanish on velocity integration) it should modify the behavior of f 

significantly. We believe that corrections to the f equation (through f k )  should 

be included if  the mode coupling analysis is to be considered valid. 

B. Comparison with Dupree's Theory 

In Dupree's perturbation theory for plasma turbulence the starting point 

is the Vlasov equation together with Poisson's Equation (33). 

The electric field and distribution function a re  then expanded in Fourier 

series in space (k) followed by an additional Fourier ser ies  in the phases 

( p k ,  &' ) relative to the arbitrary initial phases of the electric field. 
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Before proceeding we point out that Dupree’s statement that at the initial 

instant 

is not consistent with Poisson’s equation, so that the electric field is not uniquely 

determined. The statement regarding f ( t = 0 )  is essentially that of dropping the 

initial value terms of quasilinear theory,22 except that the diffusion correction 

D, to  the orbits is produced by the stztistical fields. The consequences of this 

approach have been discussed by Orszog and Kraichnan,” who have noted the 

similarity to the stochastic acceleration problem. 

Instead of discussing the difficulties of Dupree’s approach, we give a simple 

procedure based on the Vlasov equation which substantially duplicates the theory 

based on the equations for wn, while permitting a comparison with Dupree’s 

result. 

We may ensemble average Eq. (34) in any convenient way to find 

The difference quantity f - ( f )  E 8 f  then satisfies the equation 
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where we have inserted ,8 in order to follow the procedure described in Sections I1 

and III. We wish to obtain a statistical estimate of the order p t e rms  by using a 

self consistent perturbation theory. From a power series expansion in p we find 

S f O  = P ( t )  8 f ( t  = 0 )  ; 
- i o k t  6Eo = P(E,  t ) s f ( t = O ) +  1% e i k * r  e SE(k, t = 0)  

By using the p = 0 solutions we may write 6 f '  ( t )  and 6E' ( t ) i n  te rms  of 6 f 0  ( t )  

and SEo ( t ). Then multiplying 6 f ' by FE and 6E ' by 6 f and dropping sub- 

scripts yields 

x [SE(k, t )  6 f ( X ,  t )  8E(r,  t )  - (6E(k, t )  S f ( - k ,  v ,  t))  6 E ( r ,  t ) ]  

iOk( t -7) 
x e  p-' ( x ' ,  t - 7 )  [lFE(k, t )  6 f ( X ' ,  t )  6 f ( X ,  t )  - (SE(k, t )Sf(-k,  v ' ,  t)) 



We now average in  all ways so as to obtain pair correlations, and add to  obtain 

all statistical contributions to the right side of Eq. (36). 

x {(hE(k, t )  6 E ( - k ,  t ) )  6 f ( X ,  t )  + ( 6 f ( X ,  t )  6 E ( r ,  t)) 6 E ( k ,  t)} 

11 x {(ZE(k. t )  6 f ( - k ,  v ,  t)) e - i k . r  S f ( X ' ,  t )  + ( 8 f ( X ' ,  t )  8 f ( X ,  t ) )  8E(k ,  t )  

Although we are unable to motivate the above procedures, the result is identical 

to Eq. (29). As discussed previously one of these te rms  (modified by the con- 

sistency relation) is the diffusion correction to the orbits first obtained by 

Dupree. 

VI. Boltzmann Gas 

In this section we use the BBGKY equations for g n  (X, - X , ) ,  the n par- 

ticle correlation function 

and will be considered independent of time. Although some results may be 

obtained more directly by considering the n particle distribution f n ,  we follow 

g l  = f )  . The force field F is produced externally ( 
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the procedure described previously. g, satisfies the equation 

1 -  

L 

where 

a 
*n m aV . 'i ' i j  . 

i <  j =  1 

@ is the potential, and ,B is the ordering parameter. The sum 

includes all possible ways of distributing the n coordinates such that each ap- 

pears once, and the i ,  j sum runs over all values which take one coordinate 

index fro= each correlation function. 

Instead of attempting to write the full solution for P = 0, we consider the 

effect of the source te rms  for g, a s  successive corrections, and use a second 
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subscript to indicate the order of approximation of the source terms. Thus gn , 

runs the (no source term) is equal to e-H'' 

particles backward on their orbits for time t.  By using the gm ,o solutions in 

the source terms we may find g n ,  1 .  Since 

- H n  t gn(xl, - - xn, t = 0) , where e 

we may wri te  (with n 1 2 ,  ,B = 0) .  

m =  1 

Note that the sum on m contains all distinct ways of distributing the n coordinates 

between gm and g,-m. We use the relation gm,o ( t  = 0 )  = e H m  gm,o ( t )  and then 

treat the gm , as the exact functions, thereby throwing the approximation over 
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to the operator. 

I -  

The limit t - a on the operator does not exist unless boundary conditions at 

r = ~0 a re  specified on the functions gm (including g l  f ! ) y  for this operator 

brings in particles from greater distances as t increases. This should not 

occur because the orbits a r e  altered by statistical encounters with particles in 

the space ( r n +  1 ,  v n +  l). However these effects are excluded by the ordering of 

te rms  in the hierarchy, so that order ,b effects should be included to give a 

proper result. Nevertheless g2 1 ( P  

proximation to the collision integral. 

0 )  may be used to obtain the first ap- 

A. Boltzmann Equation 

For n = 2 we have 

We substitute this result  into the equation for  f and discard the initial value 

term g ,  ( t =  0 )  which will vanish for  long times if order P effects a r e  included 
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in the g, equation. 

The t e rm g2  - g, ( P =  0) is formally order p,  so  the corresponding te rm in the 

equation is order p 2  and may be neglected. We cut off t in the operator at some 

large time T, use the consequent relation 

and the fact that 

to write 
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Although Bogoluibovl obtained essentially this result he evaluated it in- 

correctly. The result is improper a s  written because the correlation extend 

to large distances I v - v 2  I T, o r  

with a statistically distributed third particle (an order ,B effect) will destroy the 

in Bogoluibov's derivation. Since interactions 

correlation we cut off the integral at  a distance h somewhat less than a mean free 

path. At distances of this order the collisional correction to  g,, and to f (since 

- H  t 
f does not evolve as e f (  t = 0)for  a mean free time) must be taken into ac- 

count by the second order theory. 

We first change the variable of integration to r = r 2  - r = (b,  4 ,  z )  where 

z is parallel to v - v and use the fact that 

The external force affects only the motion of the center of mass  and drops 

out of the operators in the collision integral. The z integral is cut off as 

specified above. 
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Here r 1(, v 1 ' ,  r 2', v 21 scatter in the absence of an external field to produce r 1, 

v 1, r + A, v 2 .  We expand r I' and r 21 above r 1, keeping terms in V f  , and find 

by evaluation 

so  that the resultant equation is 

-I 

The first term on the right is the usual Boltzma n integral, and the cor- 

rections due to a spatial gradient may be identified with the orbits of the scat- 

tering particles. The first represents a correction to the number scattered 

into r v 1  because the number of collisions at a distance h is not generally the 
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same as the number at r l .  Since particles scattering into r 1, v suffered col- 

lisions at an earlier time, for consistency the number scattered out of rl ,  v 

should be evaluated at this earlier time. This gives rise to the second te rm 

in V f ,  a correction to  the number scattered out of r v 1, because the target 

particle density must be evaluated at r + A. 

The collision integral conserves local number density, but it contributes 

to a momentum and energy flux. 

dvl  X ( v l )  [collision integral] = nhDl I d r l  v 1  ~ ( v , )  I d v 2  {f ( r l ,  v l )  J 

where 

We have not pointed out several minor difficulties in the derivation of the 

kinetic equation, as their resolution should be based on the inclusion of three 

particle effects. 
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B. Higher Order Effects 

As  in Part  A we substitute each g n t  into the order ,6 t e rm of the equation 

for  gn  and calculate the collisional correction to behavior of g,. 

The collision te rm is evaluated as before. 

111- 1 

Each integral over 

ator in the next higher equation. W e  are unable to  perform this operation at 

present, but progress is still possible for n = 2. 

/aril + should be cut off consistent with the collision oper- 
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For n = 2 we may write 

3 

f f  - n p x ,  Vi] 
a 

p e r m u t a t i o n s  i =  1 i i j =  1 
l -  

x (. -H3T e H2T e HIT - l ) g 2 ( X i , X j ,  t) f ( X , ,  t) = -6p l d X 3 k 3 - H 2 ( x 1 ,  x 2 )  - H l ( X , ) ]  

where g, 

equation. The difference between g, and g,, 

be neglected here.  (In general g n , n -  

gn 

may calculate g, , 2  to order 1 by using the first approximation g 2 .  

term. 

includes the second approximation to the source te rms  of the g, 

is regarded as order p and will 

is a functional of f , and the difference 

O(Pg,)). We - 
g n -  should be treated a s  one order smaller,  i.e. gn - g n , n -  

in the source 
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Since 

and 

d 
H 2  g 2 . 1  = - a t  t V i  + i j  - f f  

we find 

r 1 

L 

. 

x f(X,, t) f(X,, t) f ( X 3 ,  t) 



In calculating the difference ,B( g3,  - g 

g3 ,  l ( g 2 )  to Order One g 3 , l  (g2,1) 

1) to order ,B we may approximate 

x e  f ( X i ,  t) f ( X j ,  f )  f ( X k ,  t )  

Taking the difference we find 

f 

We substitute th i s  result into Eq. (43) to find the. equation for g2, correct 

to order  p. 

e e e 

(44) 

3 
- -H3T H2T HIT -H3T H I T  HIT  HIT 

x g, f - -6 J d x 3  Chi 4 7 i ~ { ~  e e e - 2 e  
i= 1 P 
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The integrals should be cut off by considering the effect of a statistically dis- 

tributed fourth particle. By initial hypothesis g 2  should depend on this cutoff 

in a weak way (order p2) .  AS before g 2  should be obtained in terms of an 

arbitrary f ,  after which the dependence on f at earlier times should be elimin- 

ated using the formal solution for  the Boltzmann equation (Eq. (41)). The latter 

requirement may be avoided if we consider a system sufficiently near equilibrium 

so  that the change of f due to flow is canceled to order p by the effects of col- 

lisions. Even in this (transport) regime the solution of the g 2  equation appears 

difficult, for the collisional shielding terms cannot be found by expansion. 

VII. Plasma Equilibrium 

For the study of thermal equilibrium the cluster expansion discussed 

recently by RamanathanZ3 is most suitable. In equilibrium the one particle 

distribution is simply f ( X 1 )  

The pair and triplet correlations ai ( r  - r j )  , ai 

f (v the Maxwellian velocity distribution. 

are defined (r , r , rk) 

by 

The pair correlation is related to  that of the BBGKY by g 2  f (v 1)  f m  ( V 2 )  a 1 2  

while the triplet correlations are quite different. For either hierarchy of equa- 

tions the usual expansion procedures are not uniformly valid; they break down 

for  large r i  j. In this section we find a convergent order  ,B correction to ni2.  
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The function a satisfies the equation 

t a123q -t O ( P ' )  ... (45) 

where the operator C is defined by 

and 4 is the potential +i  

the equation 

= -q2/ /  r - r . I. The triplet correlation a i  j k  satisfies 
J 

and all ,8 = 0 equations for  n > 2 have the form 

no dependence 

on r i  C ( i >  a i j  . . . n  
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We now define x j, which is the zero order approximation to  the pair  correlation, 

bY 
1 

C ( i ) x i j  - K T V ~ ~ ~ ~  X i j  (") = 0 

In a plasma 

where A: KT/47rnq2. We see at once that Eq. (46) has the solution 

We substitute this result into Eq. (45), with i = 3, and use the approximation 

a23  .", x23 in the te rm a12  a 2 3 ,  to  find the equation for a12  correct  to order  P. 

If we use perturbation theory we substitute a i  = xi on the right and use the 

integral 
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then we find at once 

which is the result  obtained previously by Rostoker and OfNei124 for r 1 2  -A,. 

This result breaks down for r 

In the latter case we approximate a 

Eq. (47), to find 

- q2/KT, where a I 2  = exla - 1, and for r ?> A, 

and a by x in the order ,b t e rms  of 

We use a Fourier transform to solve Eq. (48). 

n 

The inverse transformation is evaluated by analytic continuation. The result 

comes from the pole at 
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where the contribution from a branch cut starting at k = 2 ik ,  may be neglected 

for large rI2 .  

It is apparent that the asymptotic behavior of a remains undetermined. 

VIII. Conclusion 

Although the procedures described in this paper appear adequate for the 

calcu ation of a reasonably accurate (first order) collision term,  it may be de- 

sirable to recast the theory in less mathematical form for the calculation of 

higher order corrections. Since the solution of the first  order  theory is necessary 

for the calculation of higher order terms,  we must consider the development of 

procedures for solving kinetic equations as a primary goal. For the important 

case of asymptotic solutions (in the domain of transport theory) the knowledge 

of first order solutions may not be necessary, but it is not clear that second 

order corrections will be important in this regime. 
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